Skip to main content

Parallel Computation


Parallelism Concept
Paralelisme (parallelism) lahir dari pendekatan yang biasa dipergunakan oleh para perancang sistem untuk menerapkan konsep pemrosesan konkuren. Teknik ini meningkatkan kecepatan proses dengan cara memperbanyak jumlah modul perangkat keras yang dapat beroperasi secara simultan disertai dengan membentuk beberapa proses yang bekerja secara simultan pada modul-modul perangkat keras tersebut. Secara formal, pemrosesan paralel adalah sebuah bentuk efisien pemrosesan informasi yang menekankan pada eksploitasi dari konkurensi kejadian-kejadian dalam proses komputasi.Pemrosesan paralel dapat terjadi pada beberapa tingkatan (level) proses. Tingkatan tertinggi pemrosesan paralel terjadi pada proses di antara banyak job (pekerjaan) atau pada program yang menggunakan multiprogramming, time sharing, dan multiprocessing. Multiprogramming kemampuan eksekusi terhadap beberapa proses perangkat lunak dalam sebuah system secara serentak, jika dibandingkan dengan sebuah proses dalam satu waktu, dan timesharing berarti menyediakan pembagian selang waktu yang tetap atau berubah-ubah untuk banyak program. Multiprocessing adalah dukungan sebuah sistem untuk mendukung lebih dari satu prosesor dan mengalokasikan tugas kepada prosesor-prosesor tersebut. Multiprocessing sering diimplementasikan dalam perangkat keras (dengan menggunakan beberapa CPU sekaligus), sementara multiprogramming sering digunakan dalam perangkat lunak. Sebuah sistem mungkin dapat memiliki dua kemampuan tersebut, salah satu di antaranya, atau tidak sama sekali. Pemrosesan paralel dapat juga terjadi pada proses di antara prosedurprosedur atau perintah perintah (segmen program) pada sebuah program.Untuk meningkatkan kecepatan proses komputasi, dapat ditempuh dua cara :
Peningkatan kecepatan perangkat keras.
Komponen utama perangkat keras komputer adalah processor. Meskipun kecepatan processor dapat ditingkatkan terus, namun karena keterbatasan materi pembuatnya, tentu ada suatu batas kecepatan yang tak mungkin lagi dapat dilewati. Karena itu timbul ide pembuatan komputer multiprocessor. Dengan adanya banyak processor dalam satu komputer, pekerjaan bisa dibagi-bagi kepada masing-masing processor. Dengan demikian lebih banyak proses dapat dikerjakan dalam satu saat. Peningkatan kecepatan setiap proses bisa dicapai melalui peningkatan kecepatan perangkat lunak. Kecepatan perangkat lunak sangat ditentukan oleh algoritmanya.
Peningkatan kecepatan perangkat lunak.
Program komputer untuk komputer sekuensial harus menyediakan sederetan operasi untuk dikerjakan oleh prosesor tunggal. Program komputer untuk komputer paralel harus menyediakan sederetan operasi untuk beberapa prosesor untuk dikerjakan secara paralel, termasuk operasi untuk mengatur dan mengitegrasikan prosesor-prosesor yang terpisah tersebut mengerjakan suatu komputasi yang koheren. Kebutuhan akan pembuatan dan pengaturan berbagai aktivitas komputasi paralel menambah dimensi baru proses dari pemrograman komputer. Algoritma untuk problem yang spesifik harus diformulasikan sedemikian rupa, agar menghasilkan aliran operasi paralel yang kemudian akan dieksekusi di prosesor yang berbeda. Karena itu, meskipun arsitektur multiprosesor dan multikomputer mempunyai pontensi yang tinggi untuk meningkatkan kemampuan komputasi, potensi ini akan tercapai melalui pengertian yang baik mengenai bahasa pemrograman paralel dan perancangan algoritma paralel.
Tingkat Paralelisme
Berdasarkan tingkat paralelismenya prosesor paralel dapat dibagi menjadi beberapa tingkat sebagai berikut :
1. Komputer Array :
a. Prosesor array : beberapa prosesor yang bekerja sama untuk mengolah set instruksi yang sama dan data yang berbeda – beda atau biasa disebut SIMD (Single Instruction-stream Multiple Data)
b. Prosesor vektor : beberapa prosesor yang disusun seperti pipeline.
2. Multiprosesor, yaitu sebuah sistem yang memiliki 2 prosesor atau lebih yang saling berbagi memori.
3. Multikomputer, yaitu sebuah sistem yang memiliki 2 prosesor atau lebih yang masing-masing prosesor memiliki memori sendiri.
Jenis-Jenis Pemrosesan Paralel
Pemrosesan paralel dapat dibagi ke dalam beberapa klasifikasi, sebagai berikut :
1. Berdasarkan simetri penjadwalannya, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) Asymmetric Multiprocessing (ASMP)
b) Symmetric Multiprocessing (SMP)
c) ClusteringPoliteknik Telkom Sistem Komputer
2. Berdasarkan aliran instruksi dan datanya, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) SISD (Single Instruction on Single Data Stream)
b) SIMD (Single Instruction on Multiple Data Stream)
c) MISD (Multiple Instruction on Single Data Stream)
d) MIMD (Multiple Instruction on Multiple Data Stream)
3. Berdasarkan kedekatan antar prosesor, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) Multikomputer (Loosely Coupled/ local memory) dengan memori yang terdistribusi
b) Multiprosesor (Tightly Coupled/ global memory) dengan memori yang dapat digunakan bersama (shared memory)

Distributed Processing
Mengerjakan semua proses pengolahan data secara bersama antara komputer pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah yang lain akan mengambil alih tugasnya.

Architectural Parallel Computer
Dalam taksonomi arsitektur paralel ada dua keluarga arsitektur paralel yang banyak diterapkan adalah: SIMD dan MIMD, dimana untuk mesin yang murni MISD tidak ada.













Arsitektur SIMD
Mesin SIMD secara umum mempunyai karakteristik sbb:
1.       Mendistribusi proses ke sejumlah besar hardware
2.       Beroperasi terhadap berbagai elemen data yang berbeda
3.       Melaksanakan komputasi yang sama terhadap semua elemen data
Peningkatan kecepatan pada SIMD proporsional dengan jumlah hardware (elemen pemroses)
yang tersedia.

Arsitektur MISD
Prosesor pipeline adalah prosesor MISD yang bekerja berdasarkan prinsip pipelining. Pada pipeline proses dapat dibagi menjadi beberapa tahap dan beberapa proses dapat dilaksanakan secara simultan. Pada gambar dibawah dapat dilihat perbedaan proses serial dengan pipeline













Waktu eksekusi lebih cepat dibandingkan dengan proses serial.
Prinsip pipelining dapat digunakan pada dua level yang berbeda:
1. Pipeline unit aritmatika
2. Pipeline unit kontrol Waktu eksekusi lebih cepat dibandingkan dengan proses serial.

Operasi pipeline dapat dilaksanakan secara siklus yaitu cyclic pipeline, dimana dapat dibagi dalam 5 tahap:
• Operasi baca (dari shared memories)
• Operasi transfer (memori ke elemen pemroses)
• Operasi eksekusi (di elemen pemroses)
• Operasi transfer (elemen pemroses ke memori)
• Operasi simpan (di shared memories)


Comments